1,831 research outputs found

    Vigorous atmospheric motion in the red supergiant star Antares

    Full text link
    Red supergiant stars represent a late stage of the evolution of stars more massive than about nine solar masses, in which they develop complex, multi-component atmospheres. Bright spots have been detected in the atmosphere of red supergiants using interferometric imaging. Above the photosphere of a red supergiant, the molecular outer atmosphere extends up to about two stellar radii. Furthermore, the hot chromosphere (5,000 to 8,000 kelvin) and cool gas (less than 3,500 kelvin) of a red supergiant coexist at about three stellar radii. The dynamics of such complex atmospheres has been probed by ultraviolet and optical spectroscopy. The most direct approach, however, is to measure the velocity of gas at each position over the image of stars as in observations of the Sun. Here we report the mapping of the velocity field over the surface and atmosphere of the nearby red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdrafting motions of several huge gas clumps at velocities ranging from about -20 to +20 kilometres per second in the atmosphere, which extends out to about 1.7 stellar radii. Convection alone cannot explain the observed turbulent motions and atmospheric extension, suggesting that an unidentified process is operating in the extended atmosphere.Comment: 27 pages, 8 figures, published in Natur

    Evidence for bipolar jets in late stages of AGB winds

    Full text link
    Bipolar expansion at various stages of evolution has been recently observed in a number of AGB stars. The expansion is driven by bipolar jets that emerge late in the evolution of AGB winds. The wind traps the jets, resulting in an expanding, elongated cocoon. Eventually the jets break-out from the confining spherical wind, as recently observed in W43A. This source displays the most advanced evolutionary stage of jets in AGB winds. The earliest example is IRC+10011, where the asymmetry is revealed in high-resolution near-IR imaging. In this source the jets turned on only ~200 years ago, while the spherical wind is ~4000 years old.Comment: 6 pages, to appear in "Asymmetrical Planetary Nebulae III" editors M. Meixner, J. Kastner, N. Soker, & B. Balick (ASP Conf. Series

    Two Sides of the Same Coin : Unravelling the role of transcription factors and miRNAs in activated monocytes, macrophages and microglia

    Get PDF
    This thesis focusses on understanding the role of three transcriptions factors, namely ATF3, EGR3 and PU.1, and also microRNA-146a, involved in the activation of monocytes, macrophages and microglia in pathological conditions, which are thought to be driven – at least in part – by special inflammatory reactions. The diseases in question are severe psychiatric diseases, such as bipolar disorder, major depression, schizophrenia and postpartum psychosis and X-linked juvenile retinoschisis. In the introduction the immune cells, the diseases and the transcription factors + pathways will be introduced subsequently

    IRC+10216 in Action: Present Episode of Intense Mass-Loss Reconstructed by Two-Dimensional Radiative Transfer Modeling

    Get PDF
    We present two-dimensional (2D) radiative transfer modeling of IRC+10216 at selected moments of its evolution in 1995-2001, which correspond to three epochs of our series of 8 near-infrared speckle images (Osterbart et al. 2000, Weigelt et al. 2002). The high-resolution images obtained over the last 5.4 years revealed the dynamic evolution of the subarcsecond dusty environment of IRC+10216 and our recent time-independent 2D radiative transfer modeling reconstructed its physical properties at the single epoch of January 1997 (Men'shchikov et al. 2001). Having documented the complex changes in the innermost bipolar shell of the carbon star, we incorporate the evolutionary constraints into our new modeling to understand the physical reasons for the observed changes. The new calculations imply that during the last 50 years, we have been witnessing an episode of a steadily increasing mass loss from the central star, from Mdot ~ 10^-5 Msun/yr to the rate of Mdot ~ 3x10^-4 Msun/yr in 2001. The rapid increase of the mass loss of IRC+10216 and continuing time-dependent dust formation and destruction caused the observed displacement of the initially faint components C and D and of the bright cavity A from the star which has almost disappeared in our images in 2001. Increasing dust optical depths are causing strong backwarming that leads to higher temperatures in the dust formation zone, displacing the latter outward with a velocity v_T ~ 27 km/s due to the evaporation of the recently formed dust grains. This shift of the dust density peak in the bipolar shell mimics a rapid radial expansion, whereas the actual outflow has probably a lower speed v < v_inf ~ 15 km/s. The model predicts that the star will remain obscured until Mdot starts to drop back to lower values in the dust formation zone.Comment: 10 pages, 6 figures, accepted by Astronomy and Astrophysics, also available at http://www.mpifr-bonn.mpg.de/div/ir-interferometry/publications.htm

    Radiative Transfer Modeling of Three-Dimensional Clumpy AGN Tori and its Application to NGC 1068

    Full text link
    Recent observations of NGC 1068 and other AGN support the idea of a geometrically and optically thick dust torus surrounding the central supermassive black hole and accretion disk of AGN. In type 2 AGN, the torus is seen roughly edge-on, leading to obscuration of the central radiation source and a silicate absorption feature near 10 micron. While most of the current torus models distribute the dust smoothly, there is growing evidence that the dust must be arranged in clouds. We describe a new method for modeling near- and mid-infrared emission of 3-dimensional clumpy tori using Monte Carlo simulations. We calculate the radiation fields of individual clouds at various distances from the AGN and distribute these clouds within the torus region. The properties of the individual clouds and their distribution within the torus are determined from a theoretical approach of self-gravitating clouds close to the shear limit in a gravitational potential. We demonstrate that clumpiness in AGN tori can overcome the problem of over-pronounced silicate features. Finally, we present model calculations for the prototypical Seyfert 2 galaxy NGC 1068 and compare them to recent high-resolution measurements. Our model is able to reproduce both the SED and the interferometric observations of NGC 1068 in the near- and mid-infrared.Comment: 16 pages, 16 figures, 6 tables (figures reduced due to astro-ph limitations); accepted by A&

    Embedded AGN and star formation in the central 80 pc of IC 3639

    Full text link
    [Abridged] Methods: We use interferometric observations in the NN-band with VLTI/MIDI to resolve the mid-IR nucleus of IC 3639. The origin of the nuclear infrared emission is determined from: 1) the comparison of the correlated fluxes from VLTI/MIDI with the fluxes measured at subarcsec resolution (VLT/VISIR, VLT/ISAAC); 2) diagnostics based on IR fine-structure line ratios, the IR continuum emission, IR bands produced by polycyclic aromatic hydrocarbons (PAH) and silicates; and 3) the high-angular resolution spectral energy distribution. Results: The unresolved flux of IC 3639 is 90±20mJy90 \pm 20\, \rm{mJy} at 10.5μm10.5\, \rm{\mu m}, measured with three different baselines in VLTI (UT1-UT2, UT3-UT4, and UT2-UT3; 4646-58m58\, \rm{m}), making this the faintest measurement so far achieved with mid-IR interferometry. The correlated flux is a factor of 33-44 times fainter than the VLT/VISIR total flux measurement. The observations suggest that most of the mid-IR emission has its origin on spatial scales between 1010 and 80pc80\, \rm{pc} (4040-340mas340\, \rm{mas}). A composite scenario where the star formation component dominates over the AGN is favoured by the diagnostics based on ratios of IR fine-structure emission lines, the shape of the IR continuum, and the PAH and silicate bands. Conclusions: A composite AGN-starburst scenario is able to explain both the mid-IR brightness distribution and the IR spectral properties observed in the nucleus of IC 3639. The nuclear starburst would dominate the mid-IR emission and the ionisation of low-excitation lines (e.g. [NeII]12.8μm_{12.8 \rm{\mu m}}) with a net contribution of 70%\sim 70\%. The AGN accounts for the remaining 30%\sim 30\% of the mid-IR flux, ascribed to the unresolved component in the MIDI observations, and the ionisation of high-excitation lines (e.g. [NeV]14.3μm_{14.3 \rm{\mu m}} and [OIV]25.9μm_{25.9 \rm{\mu m}}).Comment: Accepted for publication in A&

    Bispectrum speckle interferometry of the massive protostellar outflow source IRAS 23151+5912

    Full text link
    We present bispectrum speckle interferometry of the massive protostellar object IRAS 23151+5912 in the near-infrared K' band. The reconstructed image shows the diffuse nebulosity north-east of two point-like sources in unprecedented detail. The comparison of our near-infrared image with mm continuum and CO molecular line maps shows that the brighter of the two point sources lies near the center of the mm peak, indicating that it is a high-mass protostar. The nebulosity coincides with the blue-shifted molecular outflow component. The most prominent feature in the nebulosity is a bow-shock-like arc. We assume that this feature is associated with a precessing jet which has created an inward-pointed cone in the swept-up material. We present numerical jet simulations that reproduce this and several other features observed in our speckle image of the nebulosity. Our data also reveal a linear structure connecting the central point source to the extended diffuse nebulosity. This feature may represent the innermost part of a jet that drives the strong molecular outflow (PA ~80 degr) from IRAS 23151+5912. With the aid of radiative transfer calculations, we demonstrate that, in general, the observed inner structures of the circumstellar material surrounding high-mass stars are strongly influenced by the orientation and symmetry of the bipolar cavity.Comment: accepted by Astronomy & Astrophysics; preprints with high-resolution images can be obtained from http://www.mpifr-bonn.mpg.de/staff/tpreibis/iras23151.htm

    The dusty torus in the Circinus galaxy: a dense disk and the torus funnel

    Get PDF
    (Abridged) With infrared interferometry it is possible to resolve the nuclear dust distributions that are commonly associated with the dusty torus in active galactic nuclei (AGN). The Circinus galaxy hosts the closest Seyfert 2 nucleus and previous interferometric observations have shown that its nuclear dust emission is well resolved. To better constrain the dust morphology in this active nucleus, extensive new observations were carried out with MIDI at the Very Large Telescope Interferometer. The emission is distributed in two distinct components: a disk-like emission component with a size of ~ 0.2 ×\times 1.1 pc and an extended component with a size of ~ 0.8 ×\times 1.9 pc. The disk-like component is elongated along PA ~ 46{\deg} and oriented perpendicular to the ionisation cone and outflow. The extended component is elongated along PA ~ 107{\deg}, roughly perpendicular to the disk component and thus in polar direction. It is interpreted as emission from the inner funnel of an extended dust distribution and shows a strong increase in the extinction towards the south-east. We find no evidence of an increase in the temperature of the dust towards the centre. From this we infer that most of the near-infrared emission probably comes from parsec scales as well. We further argue that the disk component alone is not sufficient to provide the necessary obscuration and collimation of the ionising radiation and outflow. The material responsible for this must instead be located on scales of ~ 1 pc, surrounding the disk. The clear separation of the dust emission into a disk-like emitter and a polar elongated source will require an adaptation of our current understanding of the dust emission in AGN. The lack of any evidence of an increase in the dust temperature towards the centre poses a challenge for the picture of a centrally heated dust distribution.Comment: 30 pages, 12 figures; A&A in pres
    corecore